Investigating the Extent and Possible causes of Western Redcedar Dieback throughout its Range

Evaluation Monitoring Projectdport (WCEM-20-02)
Christine Buhl (Oregon Department of Forestry), Melissa Fischer (Washington Department of Natural
Resources), and Betsy Goodrich (USFS Forest Health Protection)
March 2022

Project Summary.:“* We pr op os e d-fiendly sarpey toodanchutilizisg@ mulipency
cooperative network to map the distribution of WRC dieback and lay groundwork for more focused
sampling of mortalitlc ausi ng agents.”

Product list:
1. Geographic extent of WRdieback (OR, WA)
V S123+iNaturalistmap with groundverified WRC dieback locations
2. Network oflocationswith known WRC dieback for future sampling
V Sl123ocations(n =369)andplots (n = 147)as well as mapped areas aadultivated list ofsites
for longer-term monitoring
. List of probable environmental and site characteristics associated with WRC dieback
V Exploratory categoricalecisiontree analyses selected several environmental variables as
predictors of sites with dieback
V Statisticalanalyses found site factoessociated with regiospecific dieback
. Permanently tagged tree/site used to monitor/photograph dieback over time
V S123 plots
. Useffriendly, webbased survey tool (Survey123) with standardized protocols to record dieback
V S123 form andvritten protocol (https://arcq.is/b9Xr)
. Standardized methodology and protocol instructions
V  Written protocol(https://arcg.is/b9Xr) and video(https://youtu.be/3JgfxTJ7Jag)
. Outreach ppductsdocumenting extent of dieback arsite/environmentalresults
V  Storymap https://arcg.is/ezSaf
V Dashboardhttps://arcg.is/0em1Xv0
. Presentationsat 2021 National FHM meeting and 2021 WIFDdlif@ate chang virtual meeting
V SAF 2021 poster
V Presented progress report at 2021 WIFDWC Climate Change Meeting (larger meeting cancelled)
V 33 additional outreach and professional presentations
9. ADS andpFLASpkeafisc coor di narecerding fWRO@diechadke d t o AD
V Headsup layer ofWRC diebackointsand polygongrovided to Danny DePinfer conversion
to a TPK laydiFebruary 2022)
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10. Bonus productand collaborations

V (Oreated data collection template adapted BYSU Extension for @aNaturalistcitizen science
group to enhanceommunity engagernt and broaden data collection

V Assisted with creation of a WRC summit attended by researchers and natural resource
specialists in U.S. and Canada

V SponsoredVashington State Universitgsearchergor USFS Emerging Pests funding for
dendrochronologyanaly®s, and provideddieback sampling siteend field time for researchers

V  Contributing to WRC dieback synthesis publication led by Washington State University in spring
2022


https://arcg.is/b9Xrr
https://arcg.is/b9Xrr

Issues or followup neecdto quantifyycompletethe full extent of WRC diebkc
U No collaboratomplots/input from BC or Idaho
U Inadequate sampling of WBlympicPeninsula
Investigating the extent and possible causes of western redcedar dieback throughout its range:
Additionalinformation to support final Evaluation Monitoring project report (VEG+20-02)

Scope of the dieback issue

Forest health specialists, forest landowners, and land managers have been observing western redcedar
(WRCHieback fromORthrough western Canada recent yearsGroupsof WRGwith evidence of

dieback have even been observed across most ofahge oftenin areaswhich they normally thrive

such as along streams and in shaded areas. The cause(s) for this sometimes sudden and expanding
dieback isinknown and the focus of our projedtinfortunately, diebaclkymptoms vay widely andare

not easily visible during aerial detection survey, where this type of damage is typically recorded,
therefore the extent is unknown, but it appears to be occurringgewide.

Sme symptoms include thinning crowns, branch diebamianch flaggingrecenttopkill, chlorosis
(vellow foliage)heavy cone crops and mortali€Figure 1).

Yellowing

Biological stressors

Western redcedar is fairly insect and disease resistant. Inseatsrifest WR@re typically secondary,
meaning that they are not aggressive trkedling speciesbut are opportunistic pests and can only attack
dead and dying redcedawhen healthy, edcedar can resist endemic levels of bark beeffdddeosinus
spp.) and woodboring beetleSémanotus amethystinus, Trachykele blondeli, Chrysobothrisetexa,
While heartwood decay is commonly presentfRC the speciegontains terpenoid chemical defense
compounds (thujone and thujaplicin) and atbe use sap as a mechanical bartieat make it resistant

to many common decay fungiVestern redcedar is susceplé to various root and butt rot pathogens
(Postia sericeomollis, Coniferiporia weirii, Armillaria ostpyam often has extensive heart rot, but
primary diseasebave not beervisiblypresent at most sites where diebabks been observedNovel



insects o diseases have not been observed and are not considered the main causal agents of this
dieback epidemic.

Abiotic stressors

Given the apparent rangeide dieback and lack of consistent biotic factors, we hypothesizethieat

dieback is associated wittbioticcauses ThePNWhas been seeing increased droughty periods,
especially during the summer montfisigure2), and an increase in temperaturé/e hypothesize that
WRCare experiencing dieback in areas where warmer, drier conditions are occurringrana@i@as

where more frequent droughts affect the species ability to access water during the growing season. We
also hypothesize that site factors that predispose trees to warmer, drier environments (i.e-fagir
slopes, lower elevation, etc.) may Eaetors contributing to dieback.
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Figure2. Oregon and Washington percent aséa U.S. Drought Monitor categories (DO=Abnormally
Dry, D1=Moderate Drought, D2=Severe Drought, D3=Extreme Drought, D4=Exceptional Drought) from
2000through2021. https://droughtmonitor.unl.edu/

Western redcedar appears to be sensitive to a Fablé
Changing climate. A range of time periOdS and General circulation models {GCM) and special report on emission scenarios (SRES)
used herein,

General Circulation Mode(able 1 from Crookston

. . M pame Center name
et al. 2009)were chosen for dlsplay below (Flg_u:Be o R T O A R T
athroughd): a. current range (circa 2010) dhuja HADMC3 Met Office Hadley Centre (LK)
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Figure 3. WRC current and predicted range (habitat favorability increases yellow < green < red [most
preferred]):a. current range (circa 2010) ©huja plicatab. predicted range in 2030 under scenario B1, c.
predicted range in 2030 under scenario A2, and ddjoted range in 2090 under scenario &R2ant

Species and Climate Profile Predictions using Canadian Center of Climate Modeling and Analysis model
scenarios from Crookston et al. 2009. (Maps of all tested models:
https://charcoal2.cnre.vt.edu/climate/spees/speciesDist/Westerredcedar)



Evaluation monitoring project phases, methods, and questions

Phased data collection
A Determinethe distribution andextent of WRC dieback across PN¥ihg Survey123

(0]

O O OO

Locations-build a network of sites

Recordsymptoms—are they common across sites?

How quickly do trees die following initial symptoms?

What site factors are associated with dieback (topography, slope position, etc.)
Are there any common biotic damage agents across the range?

A Determinepotential causal agents

(0]

(0]

Determine if WRC dieback has associations with geography, soils, environment,
climate/weather, topography, site infatc.

Large scale (course resolution) soils, climate, topography, veg models included as
possible covariates

A Site retwork availablefor more in-depth investigations ofite-specificcausal agentdifture
research

(0]
(0]
(0]

(@]

More site specific investigations of dieback

Changeover time(Pls have committed to continue monitoring a subset of plots)
Tree dissectionge.g. ringollected & variousstemheights close inspections of
dying/dead tops)in-depth root investigationse.g.depth and area of roots)

Detailed soils information

Physiology in various canopy positions

Use dendrochronology (tree cores) to determine if reduced growittii@back severity
associated wittspecificdrought yeardmonths

Defining the distribution and extent of WRC dieback in the Pacific Northwest

A total 0of369 dieback sites in WA and @®Rre identified byusing Survey12a8nd of these, plotsvith

tree and site datavere establishedal47 sites(Figure $. Our goal was t@stablish a minimum of 105
plots across the range of WRC throughout respective service,aardsve exceeded that numhdbdata
collected at each plot includkboth tree data (e.g. DBlstimated agébased orpictorial evidence

crown transparency and diebad&vels crown classand stand data (e.¢otal basal area and basal area
of symptomatic WRGspect slope positioih Growth rates were approximated by legcting increment
cores and counting theumber of annual growth ringsithin several predetermined diameter growth
categoriesor DG(Ce.g., 0.25, 0.5, 1.0, 2.0 inch lengths of most recent diameter grqaie) Figurd).
One WRC at each platas oftenpermanently tagged for future monitoring amghotographic
documentation of he progression of dieback.



Figured4. Example oA WRC growth increment core and the four predetermined diameter growth
categories (DGG@hat were counted.

Our project metrics were also adapted by University of Washington researchers foriNseralist to
engage citizen scientists and broaden collection efféits.included267 iNaturalist locationsn our
WROieback database after sorting babservations outside of OR/WAhealthy tree observations,
single tree observations, and observations where the cause of mortalitkmeasgn to befire (Hulbert
2022:https://www.inaturalist.org/projects/westernredcedardiebackmap). Some analyses include
both Survg123 and iNaturalist collected datBecause we did not collect location data where only
‘“heal t hy’' wiRtGe Surgeyli23 apgordsome analyses we compared our dieback database
with locations oWRC distribution across OR/\WHigureb). Rastersof WRC @htribution data were
obtained from the Individual Species Parameter Maps {ITSP
(https://www.fs.fed.us/foresthealth/appliegdsciences/mappingeporting/indiv-tree-parameter
maps.shtm). Raster data were converted to a feature layer, artiscvhereWRbasal aea >0 were

clipped to WA and QRA\s over 40,000 point locationsoccurrede s el ected a 10% ‘tr ai

distribution points from the larger dataset and includé@65WRC distribution pointacross WA/ORn

our databaseFor some angkes we combined all data, but we also categoriaaédplot network into

three distinct ecoregions: eamtn WA (includes certral and northeastern WAopulations, cutoff at the
Cascade Crestyvesern WA, and ORFigureb). In several analyses of environmental data we compared
environments between ecoregions (‘regions’) and
di stribution’”). We do not claim that all WRC di
was to afine the environmental niche of ol#NWdieback sites and compare with the environmental

niche of the specie®NWdistribution.

Extent of WRC dieback in Washington

Western redcedar diebaakas observed acrod&/Abut was much morérequentin some areaslhe

extent of dieback ranged from a few locations observed rleaMWAcoastand on the Olympic

Peninsula, to a high concentration of locations observed along the low elevation urban corridor south of
Olympianorth along the Puget Sounth many locationsioted inthe interior distributionin

northeastern WAFigure 5). Dieback wabservedacross interionortheastern WA populations, in

central WA (what appear to be extensions of the westside populationsr the Cascade Crgsin some
locations on the OlympiPeninsula, and extensively along the urban corridor south of Olympia up to the
Canada border (Figure 5). Small pockets of WRC dieback were observed in some drainages on the slopes
of the western Cascades, but by far timest dieback noted was in lower elevations up the urban

corridor along the Puget Sound and associated islands (Eigared 6.
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Extent of WRC dieback in Oregon

In Oregon WRC dieback was concentrated in the ndotlier elevation Willamette Vallegroundthe
Portlandtri-county area fultnomah, Washingtonand Clackamasountieg and in some drainages
towards the coast and inland (Figure 5). There was very little WRC dieback noted (by either S123 or
iNaturalist surveysalongthe coastandthe southern Casades, even thaoghthese areas weralso

scouted (Figure 5Much of the dieback was concentrated in gaike habitat and at lower elevations.
Some of the mountain foothills contained pockets of old topkill but upon investigation of these stands,
advancedstem rot was prolific. Many areas indicating WRC presence, particuldhnly mid to lower

part of the state contained healthy redcedarafew scattered individuals at higher elevations.
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Figure 5. Data sources representisges with groundserifiedWRGlieback(S123 sites and iNaturalist
sites) and data source representing WRC distribution (data from Individual Tree Species Parameter map)
across Oregon and WashingtdRegions are defined as western Washington (west), east&shington
(east, separated by the Cascade Crest) and Oregon.
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highest(yellow)near metropolitan areas (especially west of the Cascade gpesgibly due to a heat

Figure6. Heat map iIIustratin frequency of sites with grond verified WRC dieback indicating intensity is

island effec{inset) which indicates higher temperatures (yellow) also in the metropolitan areas around

Portlandand Seattle Data include all Survey123 and iNaturalist dieback locations.
Summary of data collected at western reddar dieback sitesising Survey123

Ownership type of WRdlebacksites varied by statéTable 2) In OR,mostdieback was observed on
small privately owned land, whereas WA mostdiebackwasobserved orfederal landIn both QRand
WA, dieback sites were most often recorded on forested |@hable 2). Average basal a(@#)per plot
and average basal area of symptomatic WRC per plot varied amongst the three ecovéthanserage
symptomatic WR@ngingfrom 48 ft¥ac in western WAo 83 ft¥ac in eastern Whites (Table 2).
Symptomatic WRC BA generally made ub2% of total BA (Table.2)vhile we attempted to choose
sites where we did not see active insect or disease activity, Wwead decaywas often found during
extraction of ores Table 2 and\ppendixTable A). No singlebiotic damage agent was observed
frequently across WRC dieback sites (Appendix Tabléias).dieback sites occurred at lower
elevations compared with the overall distributioalthough his result was mogironouncedin ORand
westernWA (Figurer). While we expectethost dieback sés to fall on southerly aspestdiebacksites
in ORcommonly occurred at sites wito slope, whilaiebacksites in WA were most often found on
westerly facing slopes (FiguBg Slope position varied greatly by region and even within re¢fayure
9). In ORmost dieback sitewere recorded omo slopeor backslopesin eastern WA toeslopes and
backslopesvere commonandin western WA backslopes andlley bottomswere mostcommon
(Figure9). Slope position was determined on a smaller stdeml scale versus a larger landscageel
scale to more accurately depict influence on microclimate in the immediate &readominant



overstory tree species fourat dieback siten al three regions wasVRCfollowed by Dougla$ir (Table
3).

Table2. Summary statistics of grounarified sites with WRC dieback using Survey123 collected points.

Region
OR Eastern WA Western WA
Ownership Type (% Federal 3.4% 62.8% 43.7%
Plot) State  1.1% 11.5% 12.7%
Industrial Private  3.9% 8.8% 4.2%
Small Private 64.8% 13.3% 22.5%
Local 26.3% 0.9% 2.8%
Other  0.6% 2.7% 14.1%
Site Type (% Plot) Forest 57.2% 98.3% 91.5%
Urban Natural 37.2% 1.7% 1.4%
Urban Landscapet 5.6% 0.0% 7.0%
Basal Area (ft acre) Average/ Plot 130.4 154.7 164.7
Avg. Symptomatic WR( 61.6 83.4 47.6
Plot
Avg. % of plot with  50.1% 52.5% 33.0%
symptomatic WRC(
Insects & Disease No 94% 38% 59%
(including decay) Yes 6% 62% 41%
Presence
elevation of sites with dieback vs. WRC distribution
1,600 :
= . .
%’ ann . Distribution
° B Unhealthy
1 ;

aaaaaaa

WRC sites

=
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Figure7. Siteswith ground verified WRC dieback generally occupied lower elevation areas when
compared to the WRC distribution in each region. WRC distribution and dielzsrkral/easten

2 | & KA Y 30 doturréddhbtabigher elevations relative to populatis in Oregon and western
Washington. Boxes represent th&dnd 3¢ quartiles of the data, box error bars represent minimum and
maximum, and the median is defined as a line in the box center. Dots are considered outliers.



Percent Plots/ Aspect/ Region
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Figure8. Percentage of grouneerified Survey123 collected dieback locations in various aspect
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Figure9. Percentage of ground verified Surveyt@Bected dieback locations in various slope positions
by region Backslope and toeslope were the most comisiope positiongn both Oregon and eastern
Washington. More valley bottom sites were recorded in western Washington compared to the other
regions

Table 3 Frequencies ofaiininant overstoryree speciesassociated with ground verified sites with WRC
dieback collected using Survey123.

Dominant Overstory Species
Western . Bigleaf ~ Oregon Western . Mountain Subalpine Western
Location Redcedar Douglas-fi Maple Red alder White Oak Hemlock Grand fir Hemlock fir larch
Oregon 46 9 7 2 3 0 0 0 0 0
Eastern WA 25 10 0 0 0 1 1 0 1 1
Western WA 14 11 8 3 0 2 0 1 0 0
Total 85 30 15 5 3 3 1 1 1 1

Summary ofmonitor tree data collectecht western redcedar dieback sitassing Survey123

The averag®BH and average number of growth rings in each DGC was not different among ecoregions
(Tabled). Acrossall three regions, the majority of monitor trees fell into th60 or 300yearage

estimate categorieand were in the codominant canopy position (Tad]erotocols highly suggested
selecting monitor trees of codominant or dominant crown clagge estimations from Van Pelt 2008f

the crown symptoms of dlzackobserved crownthinningwas the most common symptom observed,
followed by branch diebacki@fure 10). We only chose live symptomatic monitor trees, so we did not
record mortality Future surveys should include the presence of WRC mortality at the site as a site
notation, and possibly try to capture the density of dead WRC



Table4. Summaries ofmonitor tree data collected at western redcedar dieback sites using Survey123

Region
OR Eastern WA Western WA
Average diameteat n 67 38 40
breast feight(DBH) of Average DBE  29.4 25.0 32.7
monitor trees Range 2.256.5 9.982.0 10.480.0
Average number of annue n 64 30 8
growth rings in each DGC( 0.25" 3.4 6.6 5.0
0.5" 6.3 12.2 8.6
1.0" 11.1 22.1 14.0
2.0" 20.6 39.1 26.2
Range (2.0") 7.0-58.0 17.0110.0 18.037.0
Frequencie®f monitor 50 17 1 7
treeswithin estimatedage 100 28 21 23
categories(VanPelt 2008 300 20 16 10
500 2 1 0
1500 0 0 0
Frequencies of monitor Suppressec 1 0 0
treeswithin crown Intermediate 6 4 3
classificationcategories Codominate 39 28 29

Dominant 20 6 7



Percent of Monitor Trees Dispfaying Each Crown Symptom Recorded

u Yellowing ® Thinning M Browning M Branch Dieback
M Stress Cone Crop # New Topkill M Old Topkill

FigurelO. Proportion ofcrown symptom of diebadk all groundverified Survey123 sites with WRC
dieback Most sites had multiple crown symptoms recorded. Thinning crowns were by far the most
common symptoms observed. Note: We did not select monitor trees with mortality, sditpevees not
recorded.

Statistically significant relationships between site factors and dieback/growth

In our plots @arossour combined ecoregions in WA and @& found that(see Table 5)

1

Monitor trees with larger DBH teled to be in stands witlower basal area of unhealthy WRC
(potential interpretation larger diameter trees are more vigorous and can better overitae

or climate stress)

Stands with higher basal aréanded to also have higher proportion of symptomatig2VRC

basal area as wedls aslower growthwithin eachDGQpotential interpretation more
competitionmayresult inmore WRGwith diebackhat gain less diameter growtbver time
Intermediatecrown classesxhibited the fastest growth withinthe5 ” a n@GC& . 0"
(potentialinterpretatior trees growing in the intermediate crown cldssnefit from more

shading and have fewer water needs than larger trees andhbusbenefited during some
periodswhen it comes taliameter growth ratg

Trees growingn toe slopes yielded theighest number of rings (significant only in most recent
0.25" of di @gimesukwas gosterertounged in eastern WA, and we do not have
an adequatehypothesido propose but suggest a larger sample size to test thisraction).

NE slopesontainedthe most trees with high dieback ratings and south slopm#ainedthe

most treeswith a medium ratingpotential interpretation these contrary results indicate aspect
may have been evaluated &to small of a scale (i.e. usifaral micretopographyrelative toa
larger macre landscape aspektWe did struggle with aligning observations of aspect and slope



position for this species that often occurs in small drainages, ephemeral streambeds, shady
pockets, along edges of waterways, ddowever we downloaded and attached aspect data
derived from digital elevation models and did not observe any patterns at dieback sites vs.
distribution sites with those data eithér.

Table 5Significant interactions from ANOVA analygesr(visecomparison& I RS ¢ A (i K-testsl dzR Sy (i Q
F2NJ NBINBaaA2yad)dergsRalteGondNAR 2y Qa F2NJ / KA

Predictor Response All ecoregions combined
variable variable
DBH Unhealthy Negntive correlation
WRC basal
area
Basal area Unhealthy Positive correlation
WRC basal
area
Basal area No. rings in Positive correlation
Crown class 025"
No. rings in Positive correlation
0.5”
No.rings in Positive correlation
1.0
No.rings in Positive correlation
2.00
No. rings in all other crown classesintermedate
0.5”
Crownclass  No. rings in all other crown classesintermedate
Slope 1.0"
position No. rings in  Toe slope significantly highest number of rin
0.25"”
Aspect Dieback Highest rating in N=SW<W=<no slope<NE
rating Medium rating in no slope<all aspects exce
S<S

Exploratory relationships between climate/weather data and WRC dieback

We hypothesized that abiotic factors were associated with WRC dieback across th@ & &xjglore
relationshipsof various weather/climate variabldsetween dieback locations and the OR/WA
distribution of WRCwe downloaded 3§ear normal datgfor the period 199-2020 andyearlydata

from 2015from ClimateNA v7.20 (Wang et al. 2016) for all 4,962 locafimoestlocations representing
the WRC distrbution across WA and GiRd the remaining locations with ground verified WRC diepack
(Figureb). A small subset of locations had null values for some climate/weather variables and were
excluded from analysesVe thenexploreddistributions of climatéveather variablessuch as
precipitation, temperature, andther calculatedrariablesbetween the distribution points and dieback

points.



Because we hypothesized that dieback sites may occur at sites with less average precipitaitibeor
averagéseasonatemperatures, weexplored and compare@0year climate normal data by region and
WRC status (distribution vs. unhealthy points). We also hypothesized that when a severe drought year
occurred, sites with dieback magcur in even hotter, drier sitetan therest of the distribution, so we
downloaded data for an extremely dry yaarboth stateg2015) andexploredprecipitation,
temperature,vapor pressure deficisndmanyderived variables by region and WRC stgkigures 11
and12). We hypothesizedhat early spring weathemay beimportant for WRC growth and health
especially in westside systenfites withWRGCdieback( * un h e al t h yeénerARrhad Ieverat u s )
long-term April, May, and June precipitati@and the ranges were smalleompared tothe WRC

distribution( * di st r i but , ba 2015 MadRa@s aadivarianceswere closetween

distribution and dieback sites (Figut&). Longterm and 2015 maximum temperature were both

generally higher (and variance smaller) in sites where WRCdi@lzaurred compared to sites across

the OR/WA WRC distribution.

April - June precipitation in unhealthy vs. distribution sites
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Figurell. Distribution of April, May, and June precipitation (mm) 30yeamals(19902020)and the

same months of precipitation in 2015 (a drought year in both Oregon and Washisg®figur@) at
WRQVigributiona A 1 S&4 O2YLI NBR (G2 aAdSa gAGK Bd&dzyR DOSNA T A
represent the $and 39 quartiles of the data, box error bars represent minimum and maximum, and the

median is defined as a line in the box center. Dots are considered outliers.
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Figurel2. Distribution of April, May, and Jumeaximum temperatur&0yearnormal (19962020)and

the same months daemperaturein 2015 (a drought year in both Oregon and Washingsae Figur@)

at WRCGHigributontA A 1 S&a O2YLI NBR (G2 aAdSa 6A0K Bd&dzyR @SN T
represent the $and 39 quartiles of the data, box error bars represent minimum and maximum, and the

median is defined as a line in the box center. Dots are considered outliers.

Tonarrow down the list of potential climate/weather variables associated with WRC dieback, we

explaed data usingategorical and regression tree (CART) mod&RT models are useful to explore
datastructure and develop easy to visualize decision rules for predicting categorical variables such as
ours(Kabacof2017). CART models can bsed forclassification or regressn predictive modeling

problems. V& usedthe classificatiormethod to help predict occurrence efi t her * di stri buti c
‘“unheal thy’ WRC points, whverified locatiors evithildiebhcknd poi nt s we
distribution points were from the Individual Tree Species Parameter da{&sgtire 5)CART models are
essentiallya string of if-elsestatements wherethe nodes are split into subnodes on the basis of a

threshold value of an attributén our case we included a suite of seasonal temperature, precipitation,

and calculated variables as potential predictive variales® AppendiXableA2 for full list of

variable3. Weviewedfull models andhen prunedeach treeto avoid overfittingthe databy viewing

graphs of crossalidated error results and complexity parametarsd selecting the number of nodes

that minimized the crossvalidated errorand complexity parameter valy&abacoff 2017, Milborrow

2020. We ran two separate models, offier westside locations (combining OR and western WA one

model) (Figure 13) andnefor eastside locations (Figuf).

Westside(western Washington and Oregor§ART model

The complexity parameter (cp) of 0.029 minimized errelativeerror = 0.69557 and was associated

with five nodes in the full westside tree, so the final westside model was pruned to five nodes using the

cp value of 0.029 (Tab& Figure 13). The pruned westside CART model included the climate predictor
variables of preipitation as snowirom MarchMay (PAS_sp), mean warmest month temperature

( MWMT), mean seasonal precipitati onfronj3sftedmMber and f a
November(CMI_at) as predictors (Tal®® H o g dirmate moistureindex (CMI) is described as the

difference between annual precipitation and potential evapotranspiration (PEI potential loss of

water vapor from a landscape covered by vegetation (Hogg et al. 1997). Higher CMI values indicate wet



or moist conditionsand lower CMI values indicate drier conditions (Hogg et al. 1997). Each node at the
bottom of the westside CART model shaiwee items: 1) the predicted class (distribution or

unhealthy), the predicted probability of being unhealthy, 3) the percentagsl abservations in the

node (Figure 3).

The first node to split data in the westside model was precipitation as snow in spring (Maagh

mm). A very low threshold of 3@mpr edi cted 90. 1% of all observation
probabilty( 0. 06 6) of these observations 3p Alipredictechi scl assi
unhealthylocationsfell to the right side of the tree below the threshold of PAS_spmar8(Figure B).

The next node for splitting wasean warmest month tempeture (°C) and the threshold for a split was

19.9 °C. Most of the remaining observations fell below this threshold and needed further splitting, but
3.3% of all observations were classified as ‘unhe
a hgh probabilityof being classified correctly as unheal{®y923, Figure 3). The relationship between

the first node §pring precipitation as sngvandtwo other node variablegmean temperature in the

warmest monthand autumn climate moisture indgare shown in Figure 14 and B, respectivelyviost
‘“unheal t hy’ dieback points clustered below the sp
the mean warmest month temperature (FigureA4nd the lower end of the autumn climate moisture

index (Figue 14B)

Classification tree to predict WRC classes (unhealthy vs.
distribution) in westside plots

1

sprng spring P/\.S sprng
PAS > 3 mm PAS§§mm
[ 1 ll
MWMT < 19.9 T MWMT
MWMT>188 C
MSP
MSP < 151 mm MSP > 151 mm
[ FallCMI —]
Fall CMI Fall CMI
> 15 mm <15 mm
) Y P
Deetnibution Distribution ) (Unheathy ) 3 ————> predicted class
o__m 0312 I 0678 J 0323 s precdicted probabdity of being unhealthy
w 1% 22% J \ 35% / 33“ e percentage of all abservations In the node

Figurel3. Classification tree for westside plots (western Oregon and western Washirgterfull

selection of climate predictor variablesaigilablein AppendixTableA2. Each node at the bottom of the
westside CART model shows three items: 1) the predicted class (distribution or unhealthy), the predicted
probability of being unhealthy, 3) the percentage of all observations in the mbdecomplexity

parameter (cp) of 029 minimized error (0.69557 error) and was associated with five nodes in the full
westside tree, so the final westside model was pruned to five nodes using the cp value dfl2GRSe

had a misclassification rate of 8.4% in creaBdation (calculatecs root node error * xerror * 100% =
0.12115 * 0.69557 *100¥gllowing methods itMa 2014).



Table6. Variables selected in westside cart mgdample sizeandroot node error
Westside CART model

Variable Description Node 'split’
value

PAS sp Soring (March- May) precipitation as snow (mm) 3

MWMT Mean warmest month temperature (°C) 19.9

MSP May to September precipitation (mm) 151

CMI_at Autumn (SepNov) Hogg’' s cl i ma 15
(mm)

n= 4284

Root node error: 519/4284 = 0.12115

Spring precipitation as gnow (mm)
Spring precipitation as snow (mm)

- . -.‘ - L '.
P n;' e % ¥
demaeth Ulcan. ot o ATV
Mean temperature in warmest month (C) Autumn climate moisture index (mm)

Figurel4AB. Variation and grouping of WRC status fiost and secongbredictor variablegnodes)in
westside CART model (PNAS_sp and MWM@®a3t ofthe unhealthy point$ell below the PAS_sp value

of 3 mm (first split in pruned CART model prediaetednhealthy points fall under PAS_spmrf) and

also at the higher end of the mean warmest month temperature (CART model predicted split at 19.9
degrees CA proportion of the unhealthy points are below the predicted CMI_at threshold of < 15 (last
nodesplit).

When the full datasetvasmapped and classified accordingdagingle climate threshold afpring

precipitation as snowRAS_spabove or below 3mm, the unhealthy data are predominately in the low
elevation urban corridor from the Portland/Mulémah county area up north to Seattle area, along the
Puget Sound and coastal areas on both sides of the Sound (including islands and the northeastern tip of
the Olympic Peninsula) (Figutg). When we overlay the ground verified locations with WRC dieback

top of these predictions, thersassome agreement that many verified locations of dieback occur in this
area(Figure 15)While data do not align perfectly, we feel the spring precipitation as snow looks to be a
fairly predictive variable to explain wehe dieback is most likely to ocamrwestside systemisee
misclassification rate of CART mqgdahdcould be used in further exploratory or predictive models. In

WA, the first node of the CART model did not appear to accurately predict sites along western slopes of



the Cascades or further west on the Olympic Peninsula where dieback has been observed 8rigure
The model did predict dieback along the north and nesst side of thdeninsulawhere there is some
rainshadow effectsin OR the model appears to misclassife location and/or density of redcedar of
many currently healthy sites in southe@R(coastal and the interior) as sites with diebaklany of
thosesites were scoutedbr diebackandeither a low incidence of deedar was observedliebackwas
not present or spare, or dieback was present only as old topkill (remaining crown still green) and
extensive stem decay was evident as a confounding factor
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Figurel5. AlWRCdatabaselocations separated by first predictive node (sppnecipitation as snow

3) in westside CART moglelue and orange droplets represent above and belovfitkenode threshold

of PAS_springespectively. Network of grounderified WRC dieback locations overlaidtop (data

sources = Survey123 and iNaturalist WRC dieback projects). Inset graph: spring PAS medians/quartiles
separated by region and WRC status.



Eastsidgcentral and eastern WashingtorGART model

The complexity parameter (cp) of 0.031 minimized errelative error =1.0256 error) and was

associated with five nodes in the full eastside tree, so the final eastside model was pruned to five nodes
using the cp value of 0.03The tree had a misclassification rate of 17.2% in evaidation (calculated

as root node error * xerror * 100% = 0.16318 * 1.0256 *100) (following methods in Ma 201et).
prunedeadside CART model included the climate predictor variablesigimer (dne-AugusttHo g g ' s
climate moisture indexextreme minimum temperature over 30 yeaiSMT) Hargreaves reference
evaporation (mm Eref),andprecipitation as snovas predictorsRASTable7, Figurel6). The Climate
Moisture Index (CMI) is described as thi#ference between annual precipitation and potential
evapotranspiration (PE®Pthe potential loss of water vapor from a landscape covered by vegetation
(Hogg et al. 1997). Higher CMI values indicate wet or moist conditions and lower CMI values indicate
drier conditions (Hogg et al. 1997). Each node at the bottom oé##side CART model showisree

items: 1) the predicted class (distribution or unhealthy), the predicted probability of being unhealthy, 3)
the percentage of all observations in the nodéglrels6).

The first node to split data in theadside modelwas summer (JurAugustHogg' s ¢l i mat e moi
index(Figurel6). A low threshold 0f30.9mm split data, but all data needed at least one more split. The
extreme minimum temperature predictore2 7. 2 spl it 2. 9% of the observat

(probability of 0.712and 2. 5% of t he dat&. Messobséendiiosstwere dmlut i on’ (|
using autumn Eref (following the summer CMI split) of less than 128 mm (57.5% of observations were
predicted as *‘ d6). Alltdatd withuautunanricref)> 1249 Rdedpd theeadditional variable

PAS to split data at Beal tnhmy,' amlds drhwa trieamas nwenrge * as
than 312 mm precipitation as snow (Figu®. The relationship between the first node (summer CMI)

and two other node variables (EMT and autumn Eref) are shown in Figi#B. Tompared to westside

models,he eastside ‘unhealthy’ points seemed distri bl
‘distribution’. There is some visible grouping of unhealthy points atttiglh end othe autumn Eref and

low endof summer CMIAN additional note about the eastside modethat when site attributes were

included as potential predictor variables the first node selected to split data was elevation, where more
‘unhealthy sitesoccurred atower elevationsWe ultimately decided to limit potential predictor

variables to onlglimate variables in both models and did not include elevation, aspect, etc. in any

potential models but they could potentially improve the eastside model.



Pruned Classification Tree for WRC Status In Eastside Plots

Plots
|
summer summer CMI I
summer
e Bt CMI <-30.9
; ' EMT
autumn autumn autumn M
Eref < 128 Eref  Eref>128 EMT >-27.2 EMT2-27.2
‘plxxs—\
PAS <312 PAS > 312
(" Distribution ) Unhealthy “Distbution ) (Unheathy )| | predicted dass
‘ 0.169 D882 ’ 0.333 ’ 0714 ets prodicted probability of being unhealthy
34T% > 2‘“ S 2 5% J . 29% ) ——— percentage of all cbservations in the node

Figurel6. Classification tree for eastside plgtentral and eastern WAThe full selectioof climate
predictor variables iavailable in AppendiXable A2Eadt node at the bottom of the easile CART
model shows three items: 1) the predicted class (distribution or unhealthy), the preaticbedility of
being unhealthy, 3) the percentagealf observations in the nod&€he complexity parameter (cp) of
0.031 minimized errorX.0256error) and was associatewith five nodes in the full stsidetree, so the
final eastside model was pruned to five nodesngthe cp value of 031 The tree haag
misclassification rate df7.2% in croswvalidation (calculated as root node error * xerror * 100% =
0.16318* 1.0256*100) (following methods iMa 2014).

Table7. Variables selected in s@ide cart modelsample size, and root node error
EastsideCART model

Variable Description Node 'split' value
CMI_sm Smmer(JunfAug) Hogg’' s cl i ma 30.9
(mm)
EMT Extreme minimum temperature over 30 years -27.2
Eref Hargreaves reference evaporation (mm) 128
PAS Precipitation as snow (mm). Fardividual years, it 312

covers the period between August in the previous ye
and July in the current year

n=717

Root node error: 117/717 = 0.16318
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Figurel7A-B. Variation and grouping of WRC status for fissicond, and thirdredictor variables
(nodes) ireasside CART mod&@il_sm, EMT, and Eref JaBoth distribution and unhealthy datapoints
are spread throughout the distribution of each variable, although unhealthy points do appear visibly
clustered towards the low end siimmer CMI and the high end of autumn evaporation.

When the full dataset was mapped and classified according to a single climate threshold of summer
climate moisture index (CMI_sm) above or bel®®.9mm,sites predicted asnhealthy were apparent

in both central anchortheastern WAgenerally in areamwardsthe edges of the WRistribution

(Figure 18). When we overlay the ground verified locatimin&/RC dieback on top of these predictions,
there was some agreememthereverified locations of dieback occurred, especiallpanth-central WA
and someof the mostsouthern locations in noheastern WAFigure 18). The eastside model had a
higher misclassification rate andddchot appear asisefulas the westside when knowndations of
diebackwere aligned. Lower summer climate moisture index as the first node to split data illustrates
that WRC dieback is occurring in drier, hottarations in eastern WAandincludingclimate moisture
index may be useful ifurther exploratay or predictive modelDieback sites in the very northeastern

WA Iocations (generally east of the Pendelle River and higher elevations) were not accurately
predicted(Figure 18).
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Figurel18. All WRCdatabaselocations separated by firgredictivenode (summer 2 33 Q& Of AYI G S
moisture index-30.9mm) in eastside CART modelue and orange droplets represent below and above

the cutoff of summer CMI, respectivelyastside ground verified WRC dieback locations oveslaiop

(data sourcs Surveyl123 and iNaturalist WRC dieback projects). Inset map: Summer CMI values
separated by region and WRC status.

Conclusions

1 WRC diebacWas observedcross the PNW distributionf WRCwith the exceptios of coastal and
higher elevatiormountainous regions dDR

1 Frequency of WRC diebddkcations were highesh low elevation, urbarcorridorsin western WA

and northwestern ®

The most common symptom of WRC dieback was thinning crowns, followed by branch dieback

Nosite factors were associated withgherseverity of individual tree crown dieback or transparency

At sites with dieback, symptomatic WRC made up approximateB030 of the total basal area

No biotic damage agent was found associated with WRC diebaxssate region

More WRC diebackites were observedt lower elevationcompared to the WRC distribution

across the PNW

More diebacksites were observedn westerly slopes in WAnd areas with no slope in OR

Diebacksiteswere not strongly associated witAnyone slope position

=A =4 =4 =8 =9

= =



1 In wesside systems (western WA and ORw spring precipitation as snow wte first chosen
predictor variablgrom a suite of climate variableand appeared to bafairly strong predictor
variableseparating sites with dieba¢kom the WRC distribution

1 In eastside systemgentral and eastern W)Alow summer climate moisture index weee first
chosen predictor variabl#om a suite of climate variablebut was not a strong predictor variable
separating sites with dieback frothe WRC distribution

Proposed future directions

A We have identified specific sites that are conducive to further study, based on presence of
symptoms across larger areas, ease of access and landowner permigsassubset of these sites
we recommendand will continue to develop collaborations with specialistsnvestigate)

A
A

A
A

Tree dissectionge.g. rings at various stem heights, close inspection of dead, timps)
depth root investigationsg.g.depth and area of roots)

More thorough, local investigatits into soil type, texture, drainage, etc. at sites with
WRC dieback. Note: We downloaded and attached cesecade soils information to our
locations but did not visibly note any obvious patterns of sites with dieback to
investigate further. We investigatl some available comprehensive soils variables
available from FHAAST, such as Drainage Index (see Klguwré&ppendix) and
Productivity Index, but did not see large differences between sites with dieback and
sites that represented the entire WRC disttiton (Appendix Figurédl).

Investigate physiology in various canopy positiag. sun vs. shadép vs. lower
crown)

Use dendrochronology (tree cores) to determine if reduced growth or dieback severity
were associated with drought yealsetween symptomatic trees and nearby healthy
trees (in progress by Adams/Moffat labs, Washington State University)

Note: PIs have committed to revisit a subset of sites to monitor progression of
symptoms

Note: Pls will keep Survey123 open and updateda@mdinue to collect location data

More indepth pattern analyses of climate data, site indemcrotopographyand other variables

such aghe effect ofheat islands that may influence WRC dieback occurrénoce tree to tree.

Continue scouting diebackdations across areas that were not adequately sampled within the

timeline of this project (i.e. Olympic Peninsula, Idaho, British Columbia)



APPENDIX

Appendix Tabl@l. Biotic damage agemtresencdwhen possible, we avoided selecting monitoring trees
with obvious insect or disease signs and symptoms that may confound our search for the mortality
causal agent

OR Eastern WA Western WA
Drought Scorch 0 0 1
Heart Rot 2 12 7
Keithia Blight 0 0 1
Mechanical Wound 1 0 9
Old UnidentifiedBasal Canker 1 0 0
Phbeosinusspp. 0 0 2
Root Disease 0 1 1*
Woodborers 0 0 3
Woodpecker 0 1 0

*Root pathogendentified asArmillaria sinaping first reporton dyingThuja plicatehostin Washington
(pers. comm. Me&sook KimPNW Research, Corvallis,)OR

Soil drainage index by region and WRC status

Distribution

B Unhealthy

drainage index
Ln
(=]

m

ast oregon west

region
AppendiFigureAld { 2Af RN} AYlF3IS AYyRSE® ¢KS 5NIAYyF3IS LYRSE
6SliySaa Ay RRAE209ds{asasuseidl Idrgrm soil wetness. It is designed to represent,

as an ordinal number, the amount of water thasoil contains and makes available to plants under

normal climatic conditions. The higher the DI, the more water the soil can and does, theoretically, supply

to plants Sites with DI values of 99 are essentially open water. A DI of zero indicates impermeable

surfaces like bare bedrock or urban areas dominated by pavement and bui{8icigsetzét al. 2009.




Appendix Tablé2. All potential predictiverariables anaghort descriptions included in westside and
eastside CART models (source: ClimateNA&e80normal period 1992020, Wang et al. 2016).

Variable Description

MAT mean annual temperature (°C)

MWMT mean warmest month temperature (°C)

MCMT mean coldestonth temperature (°C)

TD temperature difference between MWMT and MCMT, or continentality (°C)

MAP mean annual precipitation (mm),

MSP May to September precipitation (mm),

AHM annual heatmoisture index (MAT+10)/(MAP/1000))

SHM summer heatmoistureindex (MWMT)/(MSP/1000))

PAS precipitgtion as snow (mm). For indivi.dual years, it covers the period betwee
August in the previous year and July in the current year.

EMT extreme minimum temperature over 30 years

EXT extreme maximum temperature over 3@ars

Eref Hargreaves reference evaporation (mm)

CMD Hargreaves climatic moisture deficit (mm)

RH mean annual relative humidity (%)

CMmI Hogg' s climate moisture index (mm)

Winter (_wt): Dec (prev. yr for an individual yeafeb for annual, Jan, Feb, De
Seasonal variabgeand | for normals

months associated with
season(variables

Spring (_sp): March, April and May
Summer (_sm): June, July and August

below)

Autumn (_at): September, October and November
Tmax_wt sp, sm, at Winter, spring,summer, autummmean maximum temperature (°C)
Tmin_wt, sp, sm, at winter, spring, summer, autummean minimum temperature (°C)
Tave wt, sp, sm, at winter, spring, summer, autummean temperature (°C)
PPT wt, sp, sm, at winter, spring, summer, autumprecipitation (mm)
PAS wt, sp, sm, at winter, spring, summer, autumprecipitation as snow (mm)
Eref_wt, sp, sm, at winter, spring, summer, autumHargreaves reference evaporation (mm)
CMD_wt, sp, sm, at winter, spring, summer, autumHargreaves climatic moisture deficit (mm)
RH_wt, sp, sm, at winter, spring, summer, autumrelative humidity (%)

CMI_wt, sp, sm, at winter, spring, summer,autumHogg’' s c¢cl i mate moi st
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